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The release of heat in a system of small ferromagnetic particles with magnetic hysteresis on exposure to a
variable linearly polarized field has been studied. A chain model of the noncoherent process of magnetization
reversal has been proposed; compared to the theory of absolute single-domainality, the model made it possi-
ble to bring computational results closer to experimental data.

Introduction. Systematic study of the processes of absorption of the energy of a variable magnetic field in
dispersions of small ferromagnetic particles, which are magnetization-reversible following the hysteresis type, has been
started in [1–3]. Such systems as heat sources are of interest in that they enable one to form three-dimensional heaters
of adaptable shape and size, up to the cell size, which seems topical in the context of the trend toward miniaturization
and of the development of nanosize technologies. Our direct interest expressed in this problem is linked to the study
of the prospects for using hysteresis in small ferroparticles for local hyperthermia of malignant tumors [4]. Earlier
[1, 2], the model of absolutely single-domain ellipsoids magnetization-reversed by coherent magnetization rotation was
used for theoretical analysis of the dissipation of energy in ferrodispersions. A comparison of the results of such a cal-
culation with experimental data [1, 3] obtained for needle-shaped submicron γ-Fe2O3 particles has revealed significant
differences. They can partly be determined by the spread in particle shape and size and partly has a more fundamental
nature related to the noncoherent character of magnetization reversal. Also, the disturbance of the single-domain state
of microparticles in magnetization reversal is found in experiments on studying their magnetic properties (see [5]) and
is investigated by micromagnetism methods [6]. However, the micromagnetic relations obtained for an individual par-
ticle are complex, and the model of absolute single-domainality dominates the literature on the theory of collective
properties of ensembles of small ferroparticles. At the same time, as early as the mid-20th century it was proposed that
magnetic microparticles be described by spherical chains in connection with the large differences in the values of the
measured coercive force and that predicted by single-domain theory [7]. It was proposed that each sphere in the chain
is magnetization-reversed in a coherent manner, and there is a nonrigid orientation link of a dipole nature between the
orientations of spherical magnetic moments (this link allows the noncoherent process of magnetization reversal of the
entire chain). In the present work, a variant of the chain model has been used for studying the orientation behavior
and energy dissipation in a solid dispersion of ferroparticles with magnetic hysteresis. It has turned out that allowance
for the noncoherent character of magnetization reversal within the framework of the chain model makes it possible to
bring theoretical predictions sharply closer to measurement results.

Chain Model of Noncoherent Magnetization Reversal. We consider a linear chain consisting of three iden-
tical spherical particles which possess dipole magnetic moments mk = mek and a uniaxial crystalline magnetic anisot-
ropy characterized by the energy density K. We assume that the directions of the easiest-magnetization axes of
particles are coincident with the direction of orientation of the chain n, and the magnetic field is applied along the di-
rection h: H(t) = H0 sin (ωt)h. By virtue of the symmetric arrangement of the last particles, their dipoles have the
same orientation e2 which can differ from the orientation e1 of the dipole of the central particle. The total magnetic
energy of the chain involves the energy of dipoles in the external field, the energy of dipole interactions, and the over-
all energy of crystalline anisotropy:
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In the system in question, we separate a plane formed by the directions of the field and the chain axis. We
assume that the directions of dipole moments of particles remain in this plane in all cases. We stress the differences
of the model proposed from the chain model [7]. First, in [7] (see also [8]), consideration has been confined to iso-
tropic particles (K = 0); second, for the noncoherent process of magnetization reversal, a fan-shaped mode has been
postulated: all dipoles in the chain make the same angle with the field, whereas any two neighboring dipoles are de-
flected from the plane of symmetry through the same angle in the opposite directions. We determine the process in
question as a noncoherent plane magnetization-reversal mode. The system’s state can be described in this case by an
angle θ reckoned counterclockwise from the positive (arbitrarily) direction of the chain to the positive (arbitrarily) di-
rection of the field and determined analogously by the angles ϕ1 and ϕ2 between the positive direction of the chain
and the direction of the magnetic dipoles of the central and last particles respectively (Fig. 1). Introducing the energy
scale U∗ = 2m2 ⁄ d3 and the notation u = U ⁄ U∗, mH ⁄ U∗ = p = 4H ⁄ (πI), and KV1

 ⁄ U∗ = q = 4K ⁄ (πI2), where I is the
magnetization of particles, we represent the expression for energy (1) in the form
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The equilibrium positions of the magnetic moments are determined by the equations ∂u ⁄ ∂ϕ1 = ∂u ⁄ ∂ϕ2 = 0.
In expanded form, they are

q sin 2ϕ1 − p sin (θ − ϕ1) + sin (ϕ2 − ϕ1) + 3 cos ϕ2 sin ϕ1 = 0 ,
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The stability (minimum of energy) or instability (its maximum) of the stationary point is determined by the value of
the second energy differential in it

d
2
u = 

∂2
u

∂ϕ1
2 (∆ϕ1)

2
 + 2 

∂2
u

∂ϕ1∂ϕ2

 ∆ϕ1∆ϕ2 + 
∂2

u

∂ϕ2
2 (∆ϕ2)

2
 . (4)

The quadratic form (4) is positive definite and the stationary point is the minimum point in the case where the neces-
sarily real eigenvalues λi of the matrix of coefficients uij = ∂2u ⁄ ∂ϕi∂ϕj are all positive. The eigenvalues of the matrix
of coefficients are the roots of the characteristic equation det Nuij − λδijN = 0:

Fig. 1. Geometry of the problem.
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Clearly, the stability condition is reduced to the condition of positiveness of the smaller root of those two (λ2 > 0), and
the boundary of the stability region on the plane of variables p and q is determined by the equation λ2 = 0, i.e.,

u11u22 = u12
2

 . (5)

We consider the process of magnetization reversal of the chain by a field directed along the chain axis. When
the value of the field strength p is arbitrary and θ = 0, the equilibrim equations (3) are satisfied by any pair of values
(ϕ1, ϕ2) = (0, 0), (0, π), (π, 0), and (π, π). With allowance for the physical indistinguishability of both directions of
the chain axis, the last two solutions replicate the first ones upon change in sign of p. If, in the initial state (p = 0),
the dipoles of all the three particles have stable orientation in the positive direction of the chain axis (ϕ1 = ϕ2 = 0),
magnetization reversal occurs upon the application of the counterfield (p < 0) at the instant of reaching condition (5)
which leads to the quadratic equation
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The critical strength of the magnetization-reversal field is related to the smallest (in absolute value) root of this equation:

p∗ = − 0.778 − 2q . (7)

One more stationary point (ϕ1 = 0 and ϕ2 = π) corresponds to a state in which the last particles are magnet-
ized toward the central point. It can be stated a priori that this state is stable in a fairly weak field and for a fairly
strong crystalline anisotropy. Let p be equal to 0; then Eq. (5) takes the form
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The stability condition is q > 1.167 (K > 0.917I2). In a nonzero field, Eq. (5) has the following roots:
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Fig. 2. Diagram of the regimes of magnetization reversal of the chain by a
parallel field on the plane of dimensionless variables q–p: 1) switching of the
orientations (ϕ1, ϕ2) of the dipoles of the central and last particles (π, π) →
(0, 0); 2) (0, π) → (0, 0); 3) (0, π) → (π, π); 4) (0, 0) → (π, π).
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The values of p hold for q < 0.125 and q > 1.281. The second of these conditions has a physical meaning. The critical
values of the field of magnetization reversal of the chain in the positive (switching of the last dipoles) and negative
(switching of the central dipole) directions are different. A diagram of the modes of magnetization reversal of the
chain by a magnetic field that is parallel to its axis is presented in Fig. 2. As is seen, the modes of partial magneti-
zation reversal are unattainable in practice, since the corresponding region of critical fields lies within the region of
magnetization-reversal fields of the entire chain.

To illustrate the noncoherent character of magnetization reversal of the system in question, Fig. 3 shows the
angles of orientation of the central and last dipoles relative to the axis of the chain of isotropic particles (q = 0) just
before and after its magnetization reversal as functions of the angle between the chain and the magnetizing field. The
critical field of magnetization reversal and the state of the system before and after the jump have been determined by
numerical minimization of the energy (2) by the variables ϕ1 and ϕ2 for the prescribed value of θ and a growing
value of p. The positive value of the angle ϕ1 or ϕ2 means that the corresponding dipole is to the left of the positive
direction of the chain axis; the negative value is on the right. It is noteworthy that the last dipoles are deflected from
the chain axis toward the field, whereas the central dipole, up to θ C 56, is deflected in the opposite direction. The
maximum difference between the dipole orientations at the instant of jump occurs for θ C 54 and is about 60o.

Coercive Force and the Absorption of Energy. When the chain is magnetization-reversed in the direction of
its axis, the coercive force is determined by relation (7). Upon passage to dimensional quantities, it takes the form

Hc = 0.66I + 
2K
I

 . (8)

In particular, for isotropic iron particles (I = 1700 G) relation (8) yields Hc = 1122 Oe compared to 1420 Oe in the
case of a fan-shaped mode [7].

The energy absorbed by the chain in one act of magnetization reversal is equal to the difference of energies
in the initial and final states. For the longitudinal field, we have

∆u1 = u (p∗ (q), q, π, π) − u (p∗ (q), q, 0, 0) ,   p∗ = 0.778 + 2q . 

The numerical results obtained from this relation are approximated, with an error of less than 1%, by the dependence

∆u1 = 4.67 + 12q     (∆U1 = 1.22I
2
V + 4KV) , (9)

where V = 3V1 is the chain volume.
We consider the characteristics of magnetization reversal of the chain for an arbitrary angle of its orientation

relative to the field. The parameters of the process are the coercive force pc (field strength for which the projection of

Fig. 3. Change in the orientations of the dipoles of the central (ϕ1) and last (ϕ2)
particles in the chain (the particles are isotropic) at the instant of magnetization
reversal as a function of the angle θ of orientation of the chain relative to the
field. θ, deg.
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the total magnetic moment of the chain onto the field direction vanishes), the switching-field strength ps for which the
irreversible transfer of the chain’s dipole moments occurs, and the field energy absorbed on magnetic switching ∆u1.
We carry out computations on the basis of the procedure of numerical minimization of the chain energy (2). The re-
sults for the case of isotropic particles are presented in Fig. 4a, and those for anisotropic particles with the parameters
of a γ-Fe2O3 dispersion [1] (I = 400 G, K = 4.7⋅104 erg ⁄ cm3, and q = 0.37) are given in Fig. 4b. We note the char-
acteristic difference of the resulting dependence of the coercive force on the angle of orientation of the chain from the
analogous dependence for the model of fan-shaped magnetization reversal [7]. The small coercive-force maximum ob-
served in our experiments in fieldwise orientation of the chain is absent from the model of [7]. The dependences
∆u1(θ) and ps(θ) found numerically make it possible to compute the intensity of absorption of the variable-field energy
in a disordered ensemble of chains. The average energy per chain, absorbed in one act of magnetization reversal, is
determined by the relation

s∆u1 (p)t = ∫ 
0

π ⁄ 2

f (θ) ∆u1 (θ) F (p, θ) dθ ,
(10)

where f(θ) = sin (θ) is the normalized distribution function of the chain axes on the hemisphere 0 ≤ θ < π ⁄ 2, and

F (p, θ) = 




0 ,     p < ps (θ) ;
1 ,     p ≥ ps (θ) .

The power of energy dissipation in the disordered ensemble of chains with a volume concentration of ferromagnetic c
on exposure to the field of frequency f = ω ⁄ 2π is determined by the relation

W = 
2π
9

 cfI
2
 s∆u1t .

(11)

We compare the results for the chain model and results (obtained earlier [1]) of calculation from the model of
ellipsoids magnetization-reversible in a coherent manner to the results of measurement [1] of the energy-absorption
power in a 10% dispersion of needle-shaped γ-Fe2O3 particles in beeswax in a field of frequency f = 50 Hz. In Fig. 5,
the heat-release power W measured in [1] as a function of the field amplitude H0 is referred to the field frequency f
and to the concentration of particles c. The quantity φ = W ⁄ (cf), called the characteristic specific thermal productivity
(efficiency), of a ferrodispersion determines the energy absorbed in one cycle of variation in the field in a unit volume
of ferroparticles. Curves 1 and 2 show results of calculation from formula (10) for I = 400 G at q = 0 and q = 0.37 (K
= 4.7⋅104 erg ⁄ cm3). In the first case the crystalline anisotropy of particles is ignored; in the second case the crystalline-
anisotropy constant is taken to be equal to its value for γ-Fe2O3. For absolutely single-domain ellipsoids of revolution,
the absorption of energy is determined by the magnetization of a particle and by the effective-anisotropy constant. The

Fig. 4. Dimensionless absorbed energy ∆u1 (1), switching-field strength ps (2),
and coercive force pc (3) of the chain vs. the angle θ of its orientation relative
to the field: a) isotropic particles and b) anisotropic particles (q = 0.37). θ, deg.
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latter, along with the crystalline-anisotropy constant, involves the form-anisotropy constant Kf = 4π(Nb − Na)I2, where
Na and Nb are the demagnetization factors along the ellipsoid axes (see [5]). The typical value of the ratio of the
semiaxes of γ-Fe2O3 particles used for magnetic recording is 5:1. In this case we have Nb − Na C 0.44 and Kf =
8.8⋅105 erg ⁄ cm3, and the effective-anisotropy constant is Keff = K + Kf C 9.3⋅105 erg ⁄ cm3. The thermal productivity of
the system of ellipsoids of revolution magnetization-reversible in a coherent manner with the indicated parameters,
which has been calculated with the results of [1], is presented in Fig. 5 by curve 3. As we see, the values (predicted
within the framework of this model) of the limiting (H0 → ∞) thermal productivity of the system and the amplitude of
the field of "switching" of hysteresis differ by an order of magnitude from the values observed. Allowance for the non-
coherent character of magnetization reversal within the framework of the chain model proposed substantially diminishes
the disagreement between theory and experiment.

Conclusions. Thus, the chain approach proposing, undoubtedly, a very rough model of magnetic phenomena
in small particles ensures an acceptable description of the quantities observed and can be a useful means for studying
processes excited by an electromagnetic field in complex systems with small particles. In hyperthermia problems, the
chain model creates prerequisites for a more realistic (compared to the model of absolute single-domainality) descrip-
tion of the regularities of energy dissipation in magnetic and mechanical codynamics of particles in soft matrices.

This work was partially financed by the Belarusian Republic Foundation for Basic Research (joint Russian-Be-
larusian project T06R-162).

NOTATION

c, volume concentration; d, particle diameter, cm; ek, unit vector in the direction of the magnetic moment of
the kth particle; f, frequency, Hz; H, field strength, Oe; Hc, coercive force, Oe; h, unit vector in the direction of po-
larization of the field; I, (intensity of) magnetization, G; K, density of the energy (constant) of magnetic anisotropy,
erg ⁄ cm3; m = IV1, magnetic moment of a particle, G⋅cm3; n, unit vector in the direction of the axis of a particle
chain; Na and Nb, demagnetizing factors of an ellipsoid; p, dimensionless magnetic-field strength; ps, dimensionless
switching-field strength; pc = IHc

 ⁄ K, dimensionless coercive force; q, dimensionless anisotropy energy; t, time; U, en-
ergy, erg; U∗, energy scale, erg; u = U ⁄ U∗, dimensionless energy; ∆U1, energy absorbed by the chain of particles in
one act of magnetization reversal, erg; ∆u1, dimensionless energy absorbed in one act of magnetization reversal; V1,
particle volume, cm3; V = 3V1, volume of the chain of particles, cm3; W, energy-dissipation power, erg ⁄ cm3; ω, cyclic
frequency, sec−1; φ = W ⁄ (cf), specific thermal production of a ferrodispersion, erg⋅sec; θ, angle of orientation of the
chain; ϕ, angle of orientation of the magnetic moment. Subscripts: 1, unit (one particle, one magnetization-reversal
cycle), the central particle in the chain; 2, last particles in the chain; a and b, semiaxes of the ellipsoid of revolution;
eff, effective; c, coercive; f, form, shape.

Fig. 5. Comparison of the dependence (measured in [1]) of the characteristic
specific thermal productivity φ of a disordered system of needle-shaped γ-
Fe2O3 particles (points) on the amplitude of the variable field H0 to the results
of computations from the chain model [1) isotropic particles and 2) anisotropic
particles] and from the model of absolutely single-domain ellipsoids of revolu-
tion (3). φ, erg ⁄ cm3; H0, Oe.
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